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Abstract: Integrated Information Theory (IIT) posits that integrated information (Φ) represents the
quantity of a conscious experience. Here, the generalized Ising model was used to calculate Φ as a
function of temperature in toy models of fully connected neural networks. A Monte–Carlo simulation
was run on 159 normalized, random, positively weighted networks analogous to small five-node
excitatory neural network motifs. Integrated information generated by this sample of small Ising
models was measured across model parameter spaces. It was observed that integrated information, as
an order parameter, underwent a phase transition at the critical point in the model. This critical point
was demarcated by the peak of the generalized susceptibility (or variance in configuration due to
temperature) of integrated information. At this critical point, integrated information was maximally
receptive and responsive to perturbations of its own states. The results of this study provide evidence
that Φ can capture integrated information in an empirical dataset, and display critical behavior acting
as an order parameter from the generalized Ising model.
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1. Introduction

A growing body of evidence has emerged suggesting that many disparate natural, and particularly
biological, phenomena reside in a critical regime of dynamics on the cusp between order and disorder
[1–11]. More specifically, it has been shown that models tuned to criticality exhibit similar dynamics to
the brain [12–15], which, has led to the emergence of the Critical Brain Hypothesis [8,10]. Systems tuned
to criticality exhibit a number of useful informational properties that allow for the efficient distribution
of, and susceptibility to, information. [6,10,15–17]. For example, Marinazzo et al. demonstrated that
information is maximized at the critical temperature in an Ising scheme using human connectome data
and beyond criticality, a law of marginal diminishing returns is reached [15]. These ideas have been
further developed to suggest more broadly that critical systems are evolutionarily advantageous in
that they are more effective at reacting to their environment and ensuring their continued survival
[18–20].
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Integrated information theory (IIT) is a top-down, phenomenological approach to defining
consciousness [21]. Starting from phenomenological axioms inherently true for all conscious
experiences, mathematical postulates have been put forth creating a workspace for quantitative
research on consciousness. The main measure proposed by IIT 3.0 is the mathematical entity called
integrated conceptual information (Φ) (Big Phi) which generally seeks to measure ‘how much the
whole is greater than the sum of its parts’ of the causal structure being studied [21]. Though other
measures exist [22] which attempt to capture some form of integration or complexity, this paper uses
Φ as the metric quantifying conscious experience. For a comprehensive overview of the mathematical
taxonomy of the possible variations in defining integrated information, see [23,24].

Integrated information is a type of complexity measure that quantifies how mechanisms in a
system interact and constrain each other in emergent, irreducible ways. This allows us to measure
the properties of a system that cannot be explained by independent components of that system. Φ
is sensitive to not just information, which in general can be maximized by deterministic systems
with unique pasts and futures, but also to the distribution and integration of information. In general,
this tendency to distribute and integrate information is maximized by strongly coupled systems. To
have a system that is both strongly coupled and informative requires a balance between segregating
forces acting to differentiate the system, in conjunction with integrating forces creating new forms of
information not present within the individual components. In the Ising model, it is expected that these
exact properties emerge near the critical temperature at the onset of a phase transition.

It is important to note here that extending the concept of criticality to IIT is not new. Aguilera has
studied criticality and the behavior of Φ in a classical Ising model with a constant temperature [25].
Furthermore, Kim and Lee have noted that criticality and Φ are correlated in a Kuramoto model along
with EEG [26]. In their study coupling strength was used as the order parameter to achieve criticality
whereas here, a random set of connectivity matrices were used, and the temperature was varied as the
critical parameter. Because temperature was used as the critical parameter, we could test the critical
behavior of Φ independent of network connectivity.

The generalized Ising model simulates brain dynamics through its ability to exhibit phase
transitions and critical points and is the simplest model associated with empirical pairwise correlation
data [18,27]. Historically, the 2D classical Ising model exhibits a phase transition at a critical
temperature Tc, a global scaling parameter of the model. This model, originally intended to describe the
ferromagnetic properties of materials, was soon extended to different systems with binary interactions.
Recently, it has been shown to exhibit similar dynamics to that of the brain, giving rise to the Critical
Brain Hypothesis [2–10,14,16,28–32]. Fraiman et al. have shown that the concept of criticality extends
to classical Ising motifs with N = 200 nodes while modelling the brain [12].

This paper aims to demonstrate the critical properties of Φ extend to different network
connectivities with dynamics governed by the generalized Ising model. The generalized Ising model
has been shown to simulate the statistical behavior of the brain [12–15]. By generating Φ for random
networks, a methodology is outlined that can be applied with patient tractographies to create a novel
workspace for IIT.

To this end, the Ising model was simulated and criticality was obtained on 159 randomly generated,
positive weighted N=5 nodes networks to explore the combinatoric space of these neural network
motifs. Each unique network displayed its own idiosyncratic phase transition as measured across a
variety of its thermodynamic variables. Φ and its susceptibility χΦ were measured across the parameter
space of these models, fitting in naturally among the other thermodynamic variables such as energy
(E), magnetization (M), specific heat (Cv) or magnetic susceptibility (χ). Simulations swept across the
model’s only free parameter, the temperature of the surrounding heat bath. As the temperature was
varied from low to high, increasing energetic fluctuations became more probable. In many cases, as
this parameter was varied, the organizational structure of the system dramatically changed, exhibiting
a phase transition. Phase transitions or generalizations of such are at the heart of many of the most
interesting complex systems such as genetic networks [33] societal organizations, financial markets
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[34,35], or swarming behaviors [36,37]. The critical points where these transitions are located are
demarcated by the ‘critical temperature’ (Tc) of the generalized Ising model.

In Equation (1) an overview of the strategy employed in this paper is summarized. Ising
simulations were run given a connectivity matrix and temperature (Jij,T) with the outputs:
magnetization, magnetic susceptibility, energy, specific heat, the current spin configuration of the
system, and, a Markovian transition probability matrix (TPM). These parameters were then used
to calculate the criticality of the system along with integrated information and the susceptibility of
integrated information. All parameters were calculated as a function of temperature [M,χ,E,Cv,TPM,s,
Φ,χΦ](T).

fIsing(Jij, T)→ [M, χ, E, Cv, TPM,~s] (T)

fΦ(TPM,~s)(T)→ [Φ, χΦ] (T).
(1)

2. Materials and Methods

2.1. Random Networks

159 fully connected networks of five nodes with random edge weights uniformly sampled between
0 and 1 were generated and the principal diagonal was set to 0. The networks were then normalized
such that their strongest weight was always unity. These random networks were saved as connectivity
matrices (Jij) and fed into Monte–Carlo Metropolis Ising simulations. These random networks were
designed to explore the combinatoric space of ’ferromagnetic’ (positively weighted Jij) fully connected
neural network motifs each of which was constrained to 5 nodes.

This class of network was chosen as they are computationally tractable and represent brain
connectivity as obtained through tractography measures. The calculation of integrated information
scales super-exponentially in the number of nodes growing on O(n53n) [38]. By choosing networks of
5 nodes, the computational intractability was overcome. Following the methodology of Marinazzo
et al. and Abeyasinghe et al., the Jij can be obtained through tractography measures by counting
the number of fibers connecting the ith and jth regions[15,32]. This results in the primary diagonal
always being 0 (since one region has no fibers connecting it to itself). We further restrict ourselves to
ferromagnetic connectivity matrices which correspond to the assumption of having only excitatory
interactions. Although most parcellations of the brain are larger than 5 × 5, this treatment can be
extended to network-level dynamics.

2.2. Ising Model

The Ising model is a simple way to simulate many-body interactions between binary elements.
The simplified Ising model takes the form of Equation (2), where it is important to note in the classical
model, the (i, j) indices correspond to only neighboring lattice sites and in the general model, this
restriction is relaxed. The equations do not change from model to model, instead, it is only a change in
the collective interaction between lattice sites.

H = −∑
i,j

sisj Jij. (2)

In this equation, Jij corresponds to the weights of nodal connections, si = ±1 representing the
binary state of a magnetic ’spin’ site, and, H is the Hamiltonian or microscopic (dependent on spin
configuration) energy.

In the most generic form, the Ising model also contains a magnetic field term. This term was
not included in this study as we followed the protocol of Fraiman et al. and Abeyasinghe et al.
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for simulating spontaneous brain activity [12,32]. Present studies in our Lab are investigating the
introduction of an external magnetic field to simulate an external stimulation.

When applying the Ising model to the brain, Jij is the number of fibers as determined through
tractography measures for each region of interest, and each region of interest’s dynamics are
represented as the spin state si.

Equation (2) was used alongside nature’s tendency to minimize energy to form the transition
probability matrices for each of the 159 random networks. To equilibrate the model, a Monte–Carlo
Metropolis algorithm and corresponding update rules were applied [39]. Through each iteration, a
random element in the model was chosen and allowed the possibility for a ‘spin-flip’. A spin-flip will
occur if the energy of the system after the flip is favorable (decreases). If the energy increases, the
Boltzmann factor (kB = 1 in this study) was used to assign the probability that the ’spin-flip’ occurs.

By using the Monte–Carlo Metropolis algorithm, the calculation of the system’s partition function
was not needed, as only a ratio of probabilities was required. Equation (3) describes the probability
that was assigned to the i-th ’spin-flip’ location.

Prob (si → −si) = exp (− ∆E
kBT

) if ∆E > 0

= 1 if ∆E ≤ 0.
(3)

Following the update rules of Equation (3), a ’state-by-node’ TPM was constructed. The
temperature in the model affects the rate at which ‘unfavorable’ spin-flips occur; increasing the
temperature increases the noise/randomness of the model’s dynamics. Within each time step, all
spins could flip once, updating simultaneously for the next step until the process was repeated for the
desired number of time steps. Once the system had had enough time to equilibrate past its transient
initial state, observables in the model were measured repeatedly and accumulated to generate the
equilibrium expectation values.

Throughout the study, the simulation was run for an initial 500 time points to allow for
thermalization. Upon equilibrating, the simulation was run for 2000 iterations. Thermodynamic
properties and transition probabilities were calculated on each iteration. A logarithmically scaled
temperature distribution was sampled 200 times between 0.1 and 4, with the simulation rerun for each
temperature.

2.3. Summary Statistics

The summary statistics for observables O measured in this experiment are defined below. The
thermodynamic observables (M,χ) are stated for completeness.

M =
1
N
|

N

∑
i=1

si| (4)

χ =
〈M2〉 − 〈M〉2

T
(5)

〈Ot〉 =
1

Nt

Nt

∑
i
Oi (6)

χO = 〈O2〉 − 〈O〉2 = σ2
t (O) (7)

σ2
J (O) = 〈〈O〉2〉J − 〈〈O〉〉2J , (8)

where 〈Ot〉 is the expectation value of an observable across each iteration t. χO is the generalized
susceptibility [19,40,41] and σ2

J (O) is the variance of an observable across all networks. All these
summary statistics are calculated throughout the simulation.
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2.4. Phi

Integrated Information (Φ) was calculated (using the PyPhi Python toolbox [38]) in the 5-node
Ising model for 2000 iterations after the model reached a steady-state, which was assumed to be
achieved after 500 iterations. To calculate Φ a TPM must be supplied as well as the configuration of
the system at that time-step (st). Calculating the TPM required the calculation of probabilities from
any configuration to any other by iterating Equation (3) across all spin sites that needed to flip for the
transition to occur, then taking their product. This led to a state-by-node TPM, which was the input
parameter for PyPhi. These transition probabilities specified and constrained the past, present, and,
future states of the system. In the framework of IIT 3.0 and PyPhi, ’the TPM completely specifies the
system,’ [38] once the TPM has been realized, Φ is readily determined.

Integrated information is defined through the effective information (φ) of the minimum
information partition (MIP). This is the partition made to the system that results in the minimum
effective information. Φ is then a function of the total system X, the state of the system x and the
partition P. The basic schematic of calculating Φ is outlined below and more detail is available in
[21,23–26].

Φ{X; x} = φ{X; x, MIP(x)} (9)

MIP(x) = min [φ(X; x, P)]. (10)

3. Results

Results indicated that the integrated conceptual information generated using the generalized
Ising model, much like the classical variable magnetization, underwent a phase transition at the
critical temperature. This was detected by locating the peaks of its susceptibility curves as a function
of temperature [42], indicating that the integrated information structure of simple neural networks
behaves critically, exhibiting maximal susceptibility to perturbations and allowing for a form of
consciousness that balances coherence and continuity with information and variance. These results fit
into the scheme in which the nature of evolution and the adaptive advantage of critical systems are
understood in the context of a universe undergoing a cascade of phase transitions [43,44]. In statistical
mechanics, phase transitions are typically thought to occur in the large N limit. However, Fraiman et
al. have shown that the Ising model behaves critically for N=200 nodes. In the attached supplementary
material (Apendix A), it is demonstrated that when simulating the generalized Ising model for N =
5,25,100,250 nodes the same critical behavior is displayed [12].

159 Ising simulations were run on fully connected randomly weighted networks with N =
5 nodes. Summary statistics were calculated for simulated variables as a function of the fitting
parameter T: magnetization M, integrated information Φ, the magnetic susceptibility χ, the generalized
susceptibility of integrated information χΦ, along with the variances across all random network
samples σ2

J (O).
Figure 1 displays the summary statistics for the order and susceptibility parameters of the random

networks. Magnetization M, energy E, and Φ are plotted in the left-most column. Susceptibility χ,
specific heat Cv, and the susceptibility of Φ, χΦ are plotted in the right-most column. By averaging
these variables across all random networks, a strong parallel between the behavior of magnetization M
and integrated information Φ can be seen. Near the onset of criticality (generally approximated by the
peak of the magnetic susceptibility curve [41]) integrated information, much like the magnetization in
the Ising model, undergoes a phase transition denoted by the peak in the susceptibility of Φ (χΦ). The
regime where the fluctuations of integrated information are maximized suggests a transition point
for integrated information as an order parameter, demonstrating that the phenomenon of criticality
extends into the behavior of integrated information in the Ising model.
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Figure 1. The summary statistics for the three order parameters, Magnetization M, energy E and Φ
(panels A, B, C) across all the 159 random network simulations are shown. The variance of Φ, χΦ =

σ2
t (Φ) (panel F) is interpreted as a susceptibility of Φ and is compared to the magnetic susceptibility χ

(panel D). Another critical parameter, the specific heat Cv is plotted in panel E. These susceptibilities
peak at the same critical temperature Tc = 1.8 indicating the phase transition of integrated information
as an order parameter in the Ising model. Error bars represent standard deviation of parameters across
each connectivity matrix.

In Figure 2 the variance of magnetization (σ2
J (M)), energy (σ2

J (E)), and integrated information
(σ2

J (Φ)) are plotted in the left-most column. The variance of magnetic susceptibility (σ2
J (χ)), specific

heat (σ2
J (Cv)), and the susceptibility of integrated information (σ2

J (χΦ)) are plotted in the right-most
column. All variances were taken across the different random network connectivities. The variances
σ2

J illustrate how the connectivity choice affected the order parameters across random networks,
whereas the susceptibilities quantify the mean fluctuations of each order parameter averaged across all
random networks. These summary statistics give insights into the behavior of simple fully connected
neural networks. σ2

J (Φ) shows to distinct regions, the first at low temperatures corresponds to a
steep fall off and the second at higher temperatures is a linear decrease. These results highlight the
regions where changes in the structural connectivity of the model had the most influence on the
generation of integrated information. At lower temperatures, there is a much greater effect on Φ from
different connectivities than at higher temperatures. On the other hand, σ2

J (χΦ) displays the same
trend as σ2

J (χ) where near the critical temperature there is an increase in variance suggesting multiple
network connectivities exhibit this critical behavior. As the networks became increasingly irreducible
at criticality, each component contributed more to the conscious experience. While the magnetization
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of the model near criticality was maximally sensitive to changes in the structural connectivity, whereas
integrated information instead decays linearly.

Figure 2. The variance of the order parameters M, E, and Φ (panels A–C) and their susceptibilities
(panels D–F) across different connectivities are plotted. These plots demonstrate the potential control
one can impart to the Ising model by changing the connectivity matrix.

4. Discussion

4.1. Phase Transitions IIT

To investigate the properties of integrated information formulated by IIT 3.0, the Ising model
was employed to act as a proxy to the brain. The results show that integrated information, as
with magnetization tends to be maximally susceptible at the critical temperature (Figure 1). The
‘susceptibility’ of Φ(T), (χΦ(T)) has a distinct peak at criticality, typically the marker for a second-order
phase transition with the classical 2D Ising model. This indicates that integrated information can be
considered a macroscopic order parameter that undergoes a phase transition at the critical temperature.
The present study was limited to implementing the Ising model on fully connected graphs using
the Monte–Carlo Metropolis algorithm. In the future as more efficient algorithms for calculating Φ
emerge (or as a compromise accurate correlates of Φ), combined with Monte–Carlo and network
renormalization group methods [[16,45–50], the exploration of larger networks of different classes (e.g.,
sparse, modular hierarchical, small-world, fractal) could lead to the identification of a rich taxonomy
of phases of integrated information.
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4.2. Evolution Complexity

The exploration of integrated information in the context of critical systems undergoing phase
transitions motivates several new questions regarding the relationship between evolution, complexity,
and consciousness. In the work done by Joshi et al. and Albantakis et al. on the complexity and the
evolution of neural models and integrated information, it was shown that fitness can correlate strongly
with Φ when the system is constrained in size and/or resources [51,52]. While it is not always true that
a system will evolve to generate high Φ under more liberal constraints (e.g., infinite resources), it does
seem to be that there may be some evolutionary advantage for having high Φ. Because Φ essentially
measures the emergence of higher-order concepts within a system, it is not surprising that systems
capable of generating higher-order concepts are also capable of representing and reacting to a diverse
set of states. Therefore, for resource-limited systems, having an efficient means to represent internal
and external states may automatically give rise to high Φ or ‘consciousness’.

4.3. Utility of Criticality

Critical systems have diverging correlation lengths, undergo critical slowing down (i.e.,
integration in space and time), and simultaneously exhibit distinct and segregated structures at all
scales (i.e., scale-invariance). They are generally found in regimes of systems undergoing a transition
between phases (e.g., magnetized vs. non-magnetized in the Ising model, or synchrony vs. asynchrony
in the Kuramoto model [53–57]). In contrast to sub-critical regimes which can become completely
uniform due to their strong coupling (high integration, low differentiation), and super-critical regimes
which can become completely noise-driven (low integration, high differentiation), critical systems sit at
the cusp of integration and differentiation; generating non-negligible Φ that is maximally susceptible
to the perturbations of its environment and its own state. Our results indicate that while sub-critical
regimes can generate high Φ, the variations in Φ are negligible. Only near the critical point does
Φ have both large values and large fluctuations indicating that the critical point of the system is
maximally receptive and responsive to its states. It is in this state of maximal susceptibility where
concepts become maximally irreducible—χΦ(T) increases to a peak. At this point of criticality, the
‘conscious experience’ as defined by IIT 3.0 is the most ’conscious’; criticality exhibited by the neural
network motif leads to the ‘best’ conscious experience [21].

4.4. Future Work

Both the magnitude and susceptibility of Φ in the Ising model (and in general) are extremely
sensitive to the connectivity of the underlying system. So far, simulations have been run on static
networks, but in general, one can allow the network to evolve. Future work regarding how the
networks arise could explore different evolutionary algorithms and dynamical rules in combination
with the analysis from IIT. This would assess the role of evolution and the environment in generating
Φ and its underlying critical structure. Exploring the behavior of Φ in different classes of phase
transitions would allow further development of the ideas behind the Critical Brain Hypothesis,
and would combine the fields of neuroscience, complexity science, material science, and statistical
mechanics in order to understand the brain. Furthermore, the methodology of extracting Φ from the
generalized Ising model can be applied using Jij’s extracted from human cortical data, allowing Φ to
be extracted for conscious individuals.

5. Conclusions

Ultimately, this study is best framed in the context of the emerging complexity of our world
[44]. The brain is one of the most complex objects ever studied and the theory of it acting critically
is gaining credence. New research into critical systems has shown that criticality may be useful for
learning [9], and for optimizing information processing [10,18,19], both of which are tasks the brain is
constantly performing. Phase transitions and criticality are gaining more relevance, and the evidence
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in this paper demonstrates that by defining consciousness with IIT and using the Ising model as a
substrate, ‘consciousness’ undergoes a phase transition at criticality in the investigated neural network
motifs. This, when combined with evidence that the brain may be critical, suggests that ‘consciousness’
may simply arise out of the tendency of the brain to self-organize towards criticality. The Critical
Brain Hypothesis and IIT appear to go hand-in-hand, paving the way for more studies concerning the
interdependencies between the two models in both patient and simulated data.
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Appendix A

The generalized Ising model outlined in this paper was deemed to be reach criticallity.
However,the phenomenon of criticality is normally only present in the large N limit—is 5 nodes
sufficient to make critical claims?

The following figures demonstrate that indeed, due to the generalization of the Ising model,
critical claims are still valid. Recalling the seminal paper by Fraiman et al. regarding the classical
Ising model and its relation to brain dynamics, criticality was claimed to be observed when simulating
an Ising model on a square lattice with N = 200 nodes [12]. In the following plots, the peak in
magnetic susceptibility χ is demonstrated at critical temperatures for the generalized Ising model with
nodal sizes N = 5, 25, 100, 250. For each network, the simulation was run for 50 temperatures. The
parameters used in the simulation are summarized in Table A1.

Table A1. Summary of temperature parameters used in A1. 50 logarithmically scaled samples were
used between Ti and Tf .

N Ti Tf

5 0.001 4
25 1 20
100 10 100
250 20 200

As can be seen in Figure A1, a peak in susceptibility is present in all figures, indicating criticality
is achieved up to the literature-accepted 200 node network. This demonstrates that the concept of
criticality in the generalized Ising model extends beyond the classical large N limit, and the claims
made in the manuscript regarding the apparent critical behavior of Φ are valid.
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Figure A1. The magnetization M, for networks with N = 5 (A), 25 (B), 100 (C) and 250 (D) for random
ferromagnetic networks. The magnetic susceptibility χ for each network is shown in panels E–H.
Each network has a different critical temperature, but the same behaviour in susceptibility emerges
independent of nodal size.
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